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1 Introduction

DROP is a computational workflow that allows for
the analysis of aberrant expression and aberrant
splicing from RNA-seq data [1] using OUTRIDER
[2] and FRASER 2.0 [3], respectively. Both tools
are based on a denoising autoencoder that controls
for covariation patterns by exploiting correlations in
the data. In an autoencoder’s latent space, the es-
sential features of the input data are captured in
a lower-dimensional representation. Thus, employ-
ing the optimal latent space dimension is crucial to
enhance the performance of the autoencoder. For
this purpose, artificial outliers are injected randomly
into the dataset and the encoding dimension max-
imizing the precision-recall AUC for identifying cor-
rupted read counts is selected (Figure 1A). How-
ever, this approach is computationally demanding,
as it requires performing a time-intensive autoen-
coder fit for a range of encoding dimensions that
increases with sample size.

Salkovic et al. [4] proposed OutSingle, a fast
outlier detection method that utilizes Optimal Hard
Thresholding (OHT) for confounder control. OHT is
a deterministic technique to denoise low-rank matri-
ces based on singular value decomposition (Figure
1B). In DROP version 1.5.0 we integrate OHT to find
the optimal encoding dimensions for the autoen-
coders. Thereby, we accelerate the OUTRIDER
and FRASER 2.0 pipelines substantially, while en-
hancing or maintaining the enrichment of rare high-
impact variants.

2 Materials and Methods

2.1 Data

Here, we used the GTEx dataset which consists
of 16,213 RNA-seq samples from 49 tissues of

assumed-to-be-healthy individuals in the Genotype-
Tissue Expression Project V8 [5]. This extensive
dataset allowed us to benchmark our methods for
RNA-seq data using orthogonal DNA data.

2.2 Optimal Hard Thresholding

Optimal Hard Thresholding established by Gavish
and Donoho [6] is a deterministic approach to de-
noise low-rank matrices relying on singular value
decomposition. It assumes a model Z = X + ~F,
where the noise matrix £ has i.i.d. zero-mean en-
tries and X represents the signal. For RNA-seq
data we assume an unknown noise level v, which
can be determined by a robust estimator:

iz) =
N
omed is the median singular value of Z and pug
is the median of the Marchenko-Pastur distribution
that can be evaluated numerically by the Adaptive
Gauss-Kronrod Quadrature.
Then, the Optimal Hard Threshold can be com-
puted as:

A(B)
N
where [ is the aspect ratio of Z. The Optimal Hard

Threshold coefficient A\, () can be derived from the
formula:
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The optimal latent space dimension corresponds
to the rank of the smallest singular value that sur-
passes the optimal hard threshold 7(53, Z), which
is visualized in Figure 1B. For OUTRIDER, the
standardized log-transformed read counts serve as
OHT input, while for FRASER 2.0 the computed in-
tron Jaccard indices in the logit-scale are utilized.
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Figure 1 Contrasting overview of A) the original outlier
injection method versus B) Optimal Hard Thresholding
to determine the optimal encoding dimension for the au-
toencoder fit.

2.3 Implementation

Both for OUTRIDER (Version 1.21.0) and FRASER
2.0 (Version 2.0.0), the estimateBestQ function now
replaces the findEncodingDim and optimHyper-
Params functions, respectively. The estimateBestQ
function determines the optimal latent space di-
mension using OHT per default. Alternatively, the
user can set useOHT=FALSE to estimate the opti-
mal encoding dimension by recalling artificially in-
troduced outliers. To visualize the OHT results, the
plotEncDimSearch function can generate a singu-
lar value plot that resembles the plot in Figure 1B.
Regarding the different splice metrices in FRASER
2.0, currently only the Intron Jaccard Index is sup-
ported for OHT. DROP was updated to incorporate
the newest versions of OUTRIDER and FRASER
2.0.

2.4 Enrichment analysis

Rare variants were obtained from the GTEx WGS
data (V8) and filtered for a M AF < 0.01. For
the evaluation of the OUTRIDER results, only vari-
ants predicted to have a high impact according to
the Variant Effect Predictor (VEP) [7] were consid-
ered, while the analysis of the FRASER 2.0 output
was additionally restricted to splice donor and ac-
ceptor variants. A p-value threshold of 5 x 107
and 5 x 1072 was applied to detect outlier genes in
aberrant expression and aberrant splicing, respec-
tively. Enrichments of rare variants among detected
outliers were computed as the proportion of outlier
genes associated with a rare variant over the pro-
portion of non-outliers associated with a rare vari-
ant. To assess the statistical significance of the find-
ings, a paired Wilcoxon signed rank test was per-
formed.

3 Results and Discussion

We benchmarked the original tools OUTRIDER and
FRASER 2.0 that search for the optimal latent
space dimension among a range of values against
the updated pipelines using the OHT implemen-
tation (OUTRIDER-OHT and FRASER-OHT). For
aberrant expression, we additionally included two
competitor methods OutSingle [4] and saseR [8]
which both integrate OHT in their pipeline without
fitting an autoencoder. The following sections dis-
cuss the results across various metrics, including
encoding dimensions, execution time, and variant
enrichment.

3.1 Moderately increased latent space
dimensions

First, we compared the encoding dimensions deter-
mined by OHT with those obtained from the artificial
outlier injection approach. We observed a trend in
Figure 2, where the OHT-derived values are gener-
ally larger than the original optimal latent space di-
mensions. However, the increase is only moderate,
as most points remain close to the diagonal.

A possible reason for the elevated encoding
dimensions, is that the artificial outlier injection
method relies on the sampling of outlier amplitudes
from fixed distributions. This assumption may not
fully capture the complexity of outlier behaviour and



could lead to a slight underestimation of the optimal
latent space dimension.
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Figure 2 Comparison of encoding dimensions deter-
mined by OHT versus the original values predicted by
recalling artificially injected outliers for A) OUTRIDER
and B) FRASER 2.0. Each data point represents one
tissue of the GTEx dataset.

3.2 Accelerated execution time

All methods were assessed for their execution time
running on 30 CPU cores per tissue. While OutSin-
gle and saseR remain the fastest tools for aberrant
expression detection, replacing the artificial outlier
injection method in the OUTRIDER pipeline with the
deterministic OHT approach led to a reduction of
the execution time by an average factor of 11 across
GTEx tissues (Figure 3A). In the case of FRASER
2.0, we achieved a fourfold decrease by introduc-
ing OHT (Figure 3B). Further accelerations in both
applications are limited by the time-intensive final

autoencoder fit using the pre-computed encoding
dimensions.
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Figure 3 Median execution time of A) aberrant expres-
sion and B) aberrant splicing tools to process the GTEx
data.

3.3 Enhanced variant enrichment

To ensure that the reported improvement in the
execution time does not result in reduced qualita-
tive performance, we analyzed the enrichment of
rare high-impact variants among detected outlier
genes. Figure 4 displays that utilizing the encod-
ing dimensions computed by OHT for the autoen-
coder fit did not negatively affect the enrichment. In
fact, OUTRIDER-OHT performed significantly bet-
ter than the original OUTRIDER as well as OutSin-
gle (Figure 4A). For saseR, we observed some in-
stabilities in the outlier detection, predicting an un-
expectedly high number of aberrant genes for a few
samples. This impairs the interpretability of the pair-
wise comparison between saseR and OUTRIDER-
OHT. Examining Figure 4B, we also observe a sta-
tistically significant increase in the enrichment of
rare splice variants by FRASER-OHT.

These results again highlight the advantage of
a deterministic approach for finding the optimal la-
tent space dimension. The random procedure of
the artificial outlier injection is based on practically
derived data distributions that might not be suit-
able for every dataset of interest. In contrast, OHT
should identify the optimal encoding dimension for
any given matrix, provided that all formal require-
ments are met.

4 Conclusion

In conclusion, the integration of OHT substantially
enhances the efficiency of both OUTRIDER and
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Figure 4 Enrichment of rare high-impact variants in A) aberrantly expressed and B) aberrantly spliced genes of

GTEx samples. Each data point represents one tissue.

FRASER 2.0 by reducing execution times while im-
proving or maintaining the enrichment of rare high-
impact variants. The deterministic approach of-
fers a reliable alternative to the computationally de-
manding iterative procedure of recalling artificially
introduced outliers, enabling more scalable analy-
ses of RNA-seq data in diagnostics and biomedical
research.
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